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SYMBOLS

Area of a cross section, in square feet.

Velocity-head coefficient.

Top width of a cross section, in feet.

Coefficient in Chezy formula V=C+RS.

Mean depth defined as A/B, in feet.

Froude number, equal to V/v/gdn.

Acceleration due to gravity, 32.2 feet per second per second.
Water-surface elevation at a cross section, in feet.
Water-surface elevation at the downstream and upstrerm ends of any

reach, in feet.
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Velocity head, equivalent to aV?/2¢g, in feet.

to a downstream or upstream cross section.
k Energy-loss coefficient due to expansion of reach.
k(Ah,) Energy loss due to expansion of reach and deceleration of flow, in fect.
K Total conveyance of a cross section, in cubic feet per second.
K4, K, Conveyance at the downstream and upstream ends of any subreach,
in cubic feet per second.
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Difference in velocity head between the upstream and downstream

Loss of head due to friction, defined as L,4(1/2)(Q.+Qa)P/K.K4, in

Subscripts d or u apply

L Length required for convergence, in feet.

Lg, Length between downstream and upstream sections of a subreach, in
feet.

n Manning roughness coefficient.

Q Discharge, in cubic feet per second.

Q4, Q, Discharge at the downstream and upstream ends of any reach, in
cubic feet per second.

R Hydraulic radius of a section, equal to ratio of area to wetted perimeter,
in feet.

Sy Bed slope of channel.

v Mean velocity at a cross section, equal to Q/4, in feet per second.

y Arbitrarily selected depth at the initial scction, in feet.

Yo Uniform flow depth, in feet.



RIVER HYDRAULICS

DEFINITION OF STAGE-DISCHARGE RELATION IN
NATURAL CHANNELS BY STEP-BACKWATER ANALYSIS

By J. F. BaiLey and H. A. Ray

ABSTRACT

The step-backwater method was investigated as a technique for definin« the
upper part of stage-discharge relation in a natural channel. State-discharge
relations at 28 sites were computed by using this technique and compared with
corresponding stage-discharge relations defined by current-meter measurements.
In general, the agreement is remarkably good, and the step-backwater method
should prove useful at many sites where current-meter measurements ar: not
obtained.

INTRODUCTION

Stage-discharge relations in natural channels are usually establi-hed
by a series of current-meter measurements of discharge at various
stages. During floods, however, it is frequently impossible or im-
practical to measure peak discharges when they occur because of
conditions beyond the hydrologist’s control. Roads may be impass-
able, knowledge of the flood rise may not be available sufficiently in
advance to permit the hydrologist to reach the site near the time of
the peak, the flow of debris or ice may prevent the use of a current
meter, or insufficient personnel may make it impossible to oltain
measurements at many locations during a short flood period. Con-
sequently, the stage-discharge relation for floodflow must usually be
determined by indirect methods.

Indirectly, discharge is measured by methods such as slope-area,
contracted-opening, flow over dam, flow through culvert, and critical
depth. These methods which are described in Techniques of Water
Resources Investigations of the United States Geological Survey,
book 3, chapters 3-7 (see under authors’ names in list of references),
utilize information on the water-surface profile for a specific flood peak
and the hydraulic characteristics of the channel to determine the peak
discharge. These methods have been used extensively for many
years in the Geological Survey.

Anderson and Anderson (written commun., 1966) proposed a new
indirect method of establishing stage-discharge relations in the range
of stage for which current-meter measurements are not available and
for which channel control is dominant. The proposed method uses

Al
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the well established step-backwater method of computing water-
surface profiles for given discharges.

The purpose of this investigation was to determine the reliability
of the step-backwater method of establishing stage-discharge relations.
Stage-discharge relations established for 28 stream gaging stations by
the step-backwater method are compared with stage-discharge
relations defined by current-meter measurements. The 28 stations
are located throughout the United States and represent a variety
of hydraulic conditions.
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Washington, D.C., and Walter Hofmann, district engineer, Surface
Water Branch, Menlo Park, Calif.
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GENERAL PROCEDURE

The general procedure for establishing a stage-discharge relation
by the step-backwater method includes a transit-stacia survey of
a long reach downstream from the gage, an estimate of a stage-
discharge relation at the downstream end of the reach, and a
computation of water-surface profiles in the reach for selected dis-
charges. The end result of this procedure is a computed water-surface
elevation at the gage corresponding to each selected discharge.

THEORY

The basic equation for computation of water-surface profiles from
section to section in a reach of open channel is

hathoyt+he+k(Bh) =hy+ho, 1)

where the subscripts d and u refer to the downstream snd upstream
cross sections, respectively, and where

h=water-surface elevation at a cross section, ir feet,

2
h,,=0£=velocity head at a cross section, in feet,
29

L, (Q¢+ AN

" 2 . C e

h,:wzloss of head, in feet, due to friction in the
reach,

L;,=distance between cross sections, in feet,
@=discharge, in cubic feet per second,
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K

1.486AR*R L .
R — total conveyance at a cross section, in cubic

feet per second,
k(Ah,)=energy loss due to expansion of reach and deceleration of
flow, in feet,
k=one-half for expanding reaches and zero for contracting
reaches.

The step-backwater method consists of solving the basic equation by
trial and error computations within specified tolerances. This method
is one of several used in the computation of gradually varied flow
profiles. The method is applicable to subcritical or supercritical flow
provided that subcritical flow computations are carried upstream and
supercritical flow computations are carried downstream. The theory
underlying the basic equation assumes that uniform-flow formulas are
applicable to gradually varied flow conditions. The following ccndi-
tions are assumed to be in effect:

1. Flow is steady.

2. Slope is small so that normal depths can be considered equal to
vertical depths.

3. Water-surface elevation is level across a section.

Effects of sediment and air entrainment are negligible.

5. All energy losses are accounted for.

-~

F1gure 1.—Normal, M1, and M2 profiles.
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The step-backwater method is generally regarded as the best
method for computation of flow profiles in natural channels. This
method has two principal advantages: the maximum possible use
of channel geometry is permitted, and several water-surface
profiles of the same discharge starting with different water-surface
elevations at the initial section will tend to converge to a single profile
if backwater computations are carried upstream through an adequate
reach length. Where these profiles converge, the computed elevation
will be theoretically correct.

The convergence of water-surface profiles computed for the same
subcritical discharge is illustrated in figure 1. If flow is uniform, the
true profile will be parallel to the bed slope, and depth will be normal
at all points in the reach. If the initial starting elevation for computa-
tions is estimated too high, the profile marked M1 will be computed;
if the initial starting elevation is estimated too low, the profile marked
M2 will be computed. Both the M1 and M2 profiles converge on
the true profile, and thus at distance L upstream the error caused by
assuming an incorrect initial elevation virtually disappears.

The distance required for convergence may be estimated from
Bresse’s equations (Woodward and Posey, 1941) for bacl-water curves.
Assuming that flow is steady, uniform, and in a rectangular channel,
that the initial depth is either 0.75 or 1.25 times the normal depth, and
that the profiles converge where the computed depth is either 0.97 or

0.9

0.8
0.7 N

0.6 \
AN AN

o b ~N 4
BN \ 4
0.4 AN ~ <
0.3 N\ \
' N N
A A
0.2 < -
0.1
0 N - N
0 01 02 03 04 05 06 07 08 09 1.0 1.1 1.2 13 14
5,2
g

Fi1cure 2.—Equations 2 (M1) and 3 (M2) for determination of distance required
for convergence.
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1.03 times the normal depth, the required total reach length L may
be computed for given values of bed slope, S,, normal depth, y, and
Chezy roughness coefficient, C.

2

LS. 8598—0.6398 % (M1 Curve), @)
2

LS, 5676—0.7876 S (M2 Curve). 3)

o

For an infinitely wide rectangular channel it can be shown that
S;C?*lg=F2. Equations 2 and 3 are shown in graphical form in figure
2; for any given channel the M2 curve converges in a shorter distance.
than the M1 curve. Equations 2 and 3 were used as general guides
for determining the length of reaches to be surveyed in the field.

COLLECTION OF FIELD DATA

A transit-stadia survey of a long reach of stream channel down-
stream from the gage was made at each study site. The surveys were
run using the same basic techniques described by Benson and Dal-
rymple (1966) for indirect discharge measurements:

1. Gage datum was established by levels throughout the length of the
reach.

2. Cross sections of the stream were surveyed at intervals along the
reach. Cross sections were located where major breaks in the
high-water profile would be expected to occur because of changes
in cross-section properties along the channel. Cross sections
were spaced at a minimum interval of about one channel width.
An average of 9 cross sections were taken.

3. Roughness coefficients were selected in the field for the reach
adjacent to each cross section. Cross sections were subdivided
where appropriate, and roughness coefficients were selected for
each subsection. Roughness coefficients were selected for dif-
ferent depths of flow in each section or subsection where rough-
ness was believed to vary with depth.

4. Color photographs of the channel were taken at points along the
reach. These photographs were used in reviewing the values of
roughness coefficients selected by the field engineer. Final values
of the roughness coefficients were selected before any computa-
tions of water-surface profiles were made.

A summary of channel characteristics as determined by field sur-
veys at the 28 sites is shown in table 1. The tabulation shows that the
drainage area ranged from 5.18 to 8,550 square miles and that slope
ranged from 0.000488 to 0.00992. The values of slope shown are
for the water-surface profile defined at the time of the field survey.
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The top widths and mean depths shown in columns 5 and 6 are for
the cross section at the gage. The range in values of Manning’s n
shown in column 7 represents the range in values selected in the reach
for the main channel. Values of Froude number in column 8 are the
maximum values computed for the section at the gage. This maxi-
mum Froude number varies from 0.17 to 0.98. The data summary
presented in table 1 shows the wide variation in hydraulic conditions
found at the study sites.

ESTIMATION OF STAGE-DISCHARGE RELATION AT

INITIAL SECTION

The procedure used in computing water-surface profiles requires
an estimate of the stage-discharge relation at the initial section in the
reach. In this study all flows were subcritical and the initial section
was the one farthest downstream. The following prncedure was
used to estimate this relation:

1. The conveyance K of the initial section was computed for various
water-surface elevations as

__1.494R*
o n

K

2. The slope of the water surface in the lower part of the reach at
the time of the survey was determined.

3. The discharge at various water-surface elevations was then com-
puted as the conveyance times the square root of the slope.

4. The stage-discharge relation was plotted.

Starting elevations at the initial section for a selected discharge
were taken from the stage-discharge relation.

COMPUTATION OF WATER-SURFACE PROFILES

Water-surface profiles for selected discharges were computed for
each reach using the data obtained in the field survey to define the
variables in equation 1. Solutions of equation 1 from section to
section were obtained by an electronic computer. The following
procedure was used at each station:

1. A discharge was selected.

2. The water-surface elevation at the initial section for the selected
discharge was determined from the estimated stege-discharge
relation at the initial section.

3. The water-surface profile for the selected discharge from the

initial section to the gage was computed.

. The procedure was repeated for successively higher discharges.

5. Convergence in the reach was tested for several of the discharges
by assuming starting elevations at the initial section that were

S
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higher and lower than the elevation indicated by the stage-dis-
charge relation—for example, computations for a discharge of
400 cfs (cubic feet per second) at the Fallston, N.C. site were
carried upstream from the initial section at beginning elevations
of 2, 2.6, 3.5, and 5 feet. As shown in figure 3, all four profiles
converge to a stage of 8 feet at the gage.

SECTION NUMBER

10 9 8 7 6 5 4 3 2 1
B T T T T

1
11 £ Q=1500 cfs

S /

| —— L~ Q=100Q cfs

\

ELEVATION TO GAGE DATUM, IN FEET
o]
A
N)

\\

)

> Q=700 cfs —

1 1.

- Q=400 cfs —

RAREN
\ [\
N\
\

A

/ = 4
% I —
5 g /;———-a/
// 7 == |
4
]
3
L7
2 1 | i { { | L 1
0 200 400 600 800 1000 1200

CROSS-SECTION STATIONING, IN FEET

Ficure 3.—Water-surface profile convergence pattern, Big Knob Creek near
Fallston, N.C.

COMPUTATED STAGE-DISCHARGE RELATION AT GAGE

The discharges and the corresponding stages at the gage determined
from the backwater profiles were plotted to define tke computed
stage-discharge relation at the gage. Definition of these curves was
purposely limited to the range from medium flow to the highest flow
measured at the gage by the current-meter method. Section con-
trols usually exist at lower flow and the assumption of uniform flow
in the reach becomes less valid.

COMPARISON OF COMPUTED AND MEASURED STAGE-
DISCHARGE RELATIONS

The state-discharge relation points computed from the step-
backwater analysis are compared with stage-discharze relations
(rating curves) defined by current-meter measurements in figures
4-31. In general, the agreement between the measured and the
computed data is remarkably good. A summary of the comparison
is shown in figure 32. The standard deviation of the departures of
the computed values is 419 and — 16 percent; this deviation indicates
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that there is little overall bias in the method. There is a tendency for
closer agreement as the discharge increases at a given station and as
the flow in the channel becomes more uniform. The primary source
of error is probably in the selection of roughness coefficients
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— A Step-backwater computations
Curve defined by current-meter measurements —
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DISCHARGE, IN CUBIC FEET PER SECOND
Ficure 4.—Rating curve for Austin Creek near Cazadero, Calif.
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Ficure 5.— Rating curve for Big Knob Creck near Fallston, N.C.
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Ficure 6.—Rating curve for Bluestone River near Pipestem, W. Va.
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Ficure 7.— Rating curve for Cache Creek at Yolo, Calif.
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Ficure 8.—Rating curve for Chattahoochee River near Leaf, Ga.
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Figure 9.—Rating curve for Deep River at Ramseur, N.C.
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Fioure 10.—Rating curve for Elk River below Webster Springs, W. Va.
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F1aure 11.—Rating curve for Eno River at Hillsboro, N.C.
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FiGure 12.—Rating curve for Etowah River near Dawsonville, Ga.
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Ficure 13.—Rating curve for Haw River near Benaja, N.C.
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Figure 14.—Rating curve for Kalihi Stream at Kalihi, Hawaii.
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Figure 15.—Rating curve for Mokelumne River near Mokelumne Hill, Calif.
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F16ure 16.—Rating curve for Monocacy River at Bridgeport, Md.
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Ficure 17.—Rating curve for Murder Creek near Montic:llo, Ga.
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Ficure 18.— Rating curve for Outlet Creek near Longvale, Calif.
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Ficure 19.—Rating curve for Russian River near Hopland, Calif.
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Fieure 20.—Rating curve for Schuylkill River at Pottstown, Pa.
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Ficure 21.—Rating curve for Second Broad River at Cliffs‘de, N.C.
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Ficure 22.—Rating curve for South Beaverdam Creek at Dev'y Rose, Ga.
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Ficure 23.—Rating curve for South Fork Tule River near Success, Calif.
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Ficure 24.— Rating curve for South River near Waynesboro, Va.
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Ficure 25.—Rating curve for South Tyger River near Reidsville, S.C.
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Fiaure 26.—Rating curve for South Yadkin River near Mocksville, N.C.
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Fiaure 27.—Rating curve for Tanana River near Tanacross. Alaska.
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Ficure 28.—Rating curve for Truckee River at Reno, Nev.
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Ficure 29.—Rating curve for Umpqua River near Elkton, Oreg.
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Ficure 30.— Rating curve for Willamina Creek near Willar~ina, Oreg.
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Ficure 31.—Rating curve for Yellow River near Snellville, Ga.
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Ficure 32.—Computed discharge compared with measured discharge.

CONCLUSIONS

1. Stage-discharge relations established by step-backwater anelysis
closely approximate the corresponding stage-discharge relations
defined by current-meter measurements at the 28 sites used in
this investigation. The standard deviation of the comruted
discharges, +19 and —16 percent, indicates little overall bias
in the method.

2. Satisfactory stage-discharge relations can be established on any
stream regardless of size, slope, and roughness provided definition
of channel geometry is possible through an adequate reach length.

3. The step-backwater method of establishing stage-discharge rela-
tions can be very useful in the definition of the high-stage part of
the rating curves at sites where current-meter measurements are
not obtained.
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